



# Industrialising Artificial Intelligence. Predictive maintenance

Andrés Iborra Martín. Analytics & Big Data Director.

# **IECISA** part of the Gfi Group





CONSULTANTS



FRANCE **BELGIUM** SPAIN **PORTUGAL** MEXICO LUXEMBOURG COLOMBIA **POLAND** 

MOROCCO ROMANIA SWITZERLAND BRAZIL TUNISIA IVORY COAST

PERU USA ANGOLA CAMEROON **ENGLAND** U.A.E.

RP OF PANAMA CHILI COSTA RICA DOMINICAN REPUBLIC

SINGAPORE (ARGENTINA)

AMBITION INNOVATION COMMITMENT **TEAM SPIRIT** SOCIALRESPONSIBILITY

#### **ACTIVITIES**



- à CONSULTING
- à APPLICATION & INFRASTRUCTURE SERVICES
- SYSTEM INTEGRATION (Business Solutions, ERP, CRM, PLM...)
  - OUTSOURCING
- à VALUE ADDED RESELLING
- SOFTWARE

#### **BUSINESS** SOLUTIONS

- PUBLIC SECTOR HEALTHCARE-SOCIAL
- à INSURANCE
- à RETAIL
- à TELECOM

#### **GROUP ALLIANCES**

- à SAP, Microsoft, Oracle, Salesforce
- à AWS, IBM, Sage, HRAccess
- à PTC, Siemens, Dassault

Proximity-Intimacy-Agility

Industrialisation-Automation

Innovation-Business Solutions

# 2,300 million euros € REVENUE 2019 (pf)



#### **SERVICE CENTERS**

#### IN FRANCE

- à LILLE
- à LYON à MEUDON
- à NANTES
- TOULOUSE

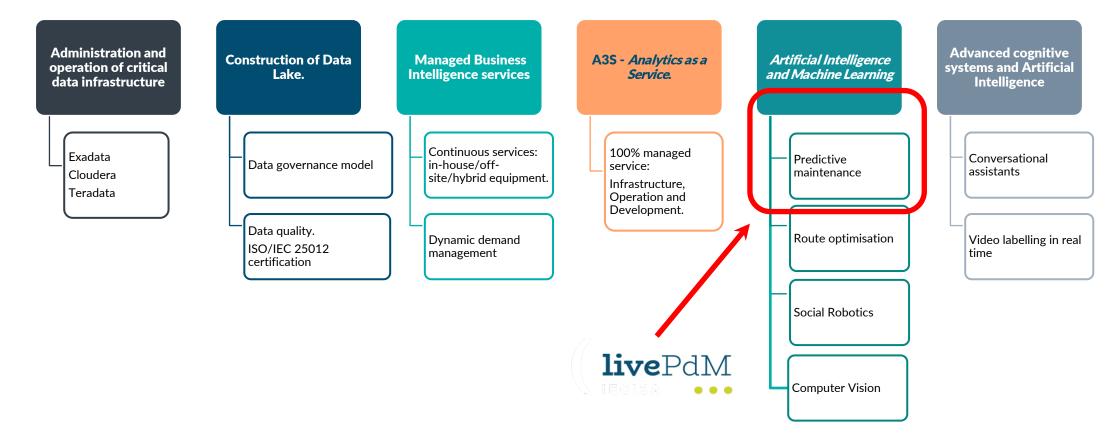
#### INTERNATIONAL

- à APAC (Macau)
- BRAZIL (São Paulo)
- à COLOMBIA (Bogota)
- à INDIA (Pune)
- MOROCCO (Casablanca)
- POLAND (Warsaw-Poznan-Lublin)
- PORTUGAL (Lisbon-Covilha-Bragança) ROMANIA (Bucarest-Constanza)
- SPAIN (Alicante-Zamudio)
- TUNISIA(Tunis)

### **BUSINESS** SECTORS



- PUBLIC-HEALTHCARE
- TELECOM-MEDIA-TECHNOLOGIES
- **ENERGY-UTILITIES-CHEMICALS**
- RETAIL-CONSUMER GOODS
- TRANSPORTATION-TRAVEL-SERVICES




## **GROUP PRACTICES**



# Analytics & Big Data Capabilities at IECISA





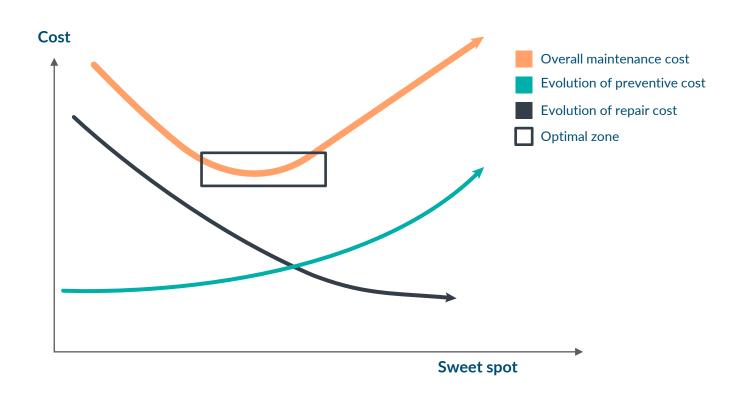
# Why do we talk of Industrialising Artificial Intelligence?









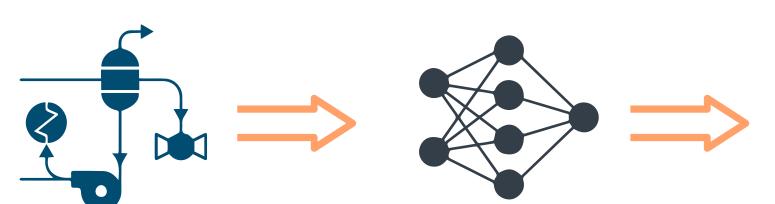

Technology

Challenges

Industrialise

# Applied to Predictive Maintenance






Is my maintenance cost optimal?

Is the cost of unavailability through breakage properly valued?

Tools and methodologies to help **minimise the cost of maintenance**, by calculating optimal performance.

## livePdm. What does it do?

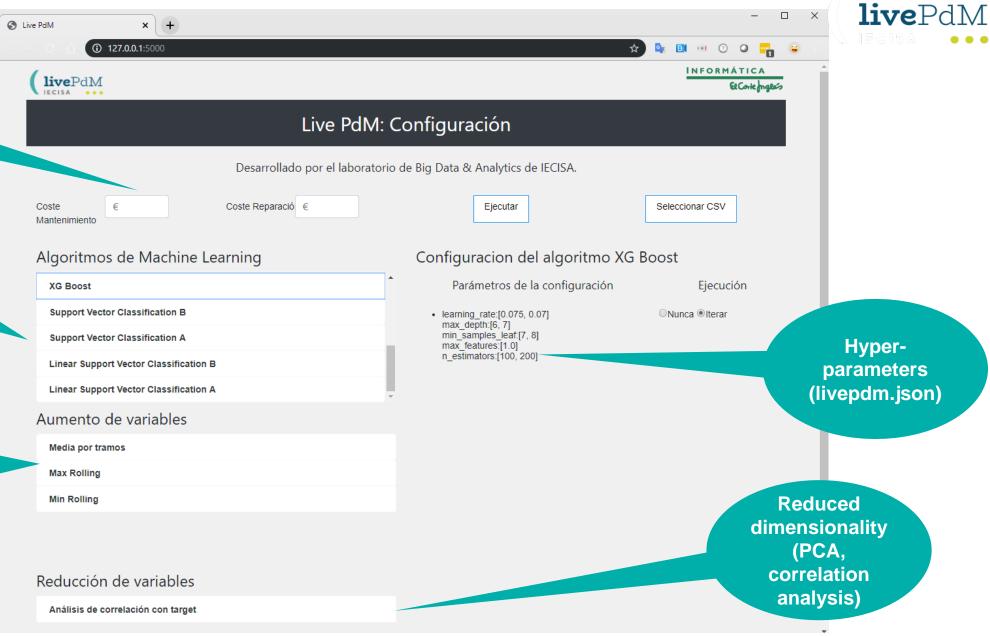






- Hyper-parametrisation
- Algorithm competency
- More than 450 Algorithms with their parametrisations
- Extremely high instance capacity
  - NVIDIA Tesla/K80 GPUs
  - Serverless architectures

| id  | cycle | setting1 | setting2 | setting3 | s <b>1</b> | s2     | s3      | s4      | s5    | s6    | s7     | s8      | s9      | s <b>1</b> 0 | s <b>11</b> | s12    | s <b>1</b> 3 | s <b>1</b> 4 | s15    | s16  | s <b>1</b> 7 | s18  | s19 | s20   | s2 <b>1</b> |
|-----|-------|----------|----------|----------|------------|--------|---------|---------|-------|-------|--------|---------|---------|--------------|-------------|--------|--------------|--------------|--------|------|--------------|------|-----|-------|-------------|
| 1   | 1     | -0.0007  | -0.0004  | 100      | 518.67     | 641.82 | 1589.7  | 1400.6  | 14.62 | 21.61 | 554.36 | 2388.06 | 9046.19 | 1.3          | 47.47       | 521.66 | 2388.02      | 8138.62      | 8.4195 | 0.03 | 392          | 2388 | 100 | 39.06 | 23.419      |
| 1   | 2     | 0.0019   | -0.0003  | 100      | 518.67     | 642.15 | 1591.82 | 1403.14 | 14.62 | 21.61 | 553.75 | 2388.04 | 9044.07 | 1.3          | 47.49       | 522.28 | 2388.07      | 8131.49      | 8.4318 | 0.03 | 392          | 2388 | 100 | 39    | 23.4236     |
| 1   | 3     | -0.0043  | 0.0003   | 100      | 518.67     | 642.35 | 1587.99 | 1404.2  | 14.62 | 21.61 | 554.26 | 2388.08 | 9052.94 | 1.3          | 47.27       | 522.42 | 2388.03      | 8133.23      | 8.4178 | 0.03 | 390          | 2388 | 100 | 38.95 | 23.3442     |
| 100 | 198   | 0.0004   | 0        | 100      | 518.67     | 643.42 | 1602.46 | 1428.18 | 14.62 | 21.61 | 550.94 | 2388.24 | 9065.9  | 1.3          | 48.09       | 520.01 | 2388.24      | 8141.05      | 8.5646 | 0.03 | 398          | 2388 | 100 | 38.44 | 22.9333     |
| 100 | 199   | -0.0011  | 0.0003   | 100      | 518.67     | 643.23 | 1605.26 | 1426.53 | 14.62 | 21.61 | 550.68 | 2388.25 | 9073.72 | 1.3          | 48.39       | 519.67 | 2388.23      | 8139.29      | 8.5389 | 0.03 | 395          | 2388 | 100 | 38.29 | 23.064      |
| 100 | 200   | -0.0032  | -0.0005  | 100      | 518.67     | 643.85 | 1600.38 | 1432.14 | 14.62 | 21.61 | 550.79 | 2388.26 | 9061.48 | 1.3          | 48.2        | 519.3  | 2388.26      | 8137.33      | 8.5036 | 0.03 | 396          | 2388 | 100 | 38.37 | 23.0522     |


IECISA ML/AI laboratory Cloud Platform to calculate **maintenance optimisation** 



**Economic** estimators

Scikit-learn, Tensorflow, Keras algorithms

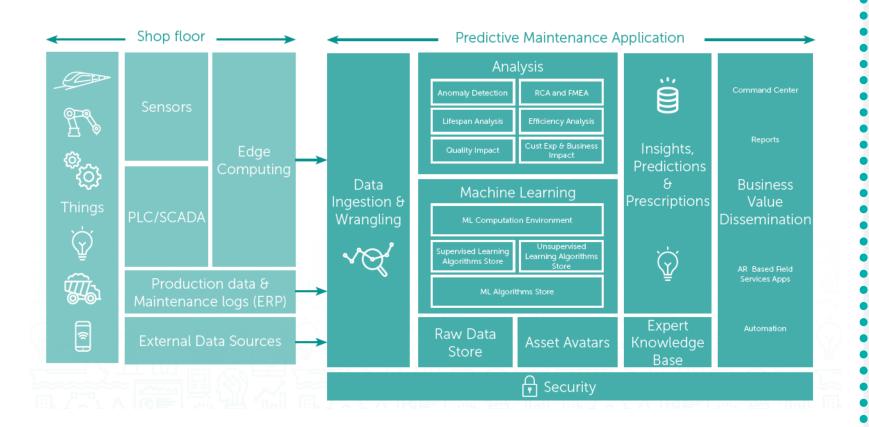
**Dataset** enrichment



## Economic Estimator.



| Analy | vtical  | cal | CH    | lation |
|-------|---------|-----|-------|--------|
| Allal | y ticai | Cai | l C U | lation |


|   | Profit    | Model                          | Accuracy | Thresbold | TP | FP | TN | FN | TPR      | FPR      | TNR      | FNR      | Precision | Recall   | F1 Score | ROC<br>AUC | model_trained                                         | Config                                                       |
|---|-----------|--------------------------------|----------|-----------|----|----|----|----|----------|----------|----------|----------|-----------|----------|----------|------------|-------------------------------------------------------|--------------------------------------------------------------|
| 0 | -1.190141 | Decision<br>Tree               | 0.6624   | 0.118168  | 24 | 73 | 3  | 0  | 1.000000 | 0.963615 | 0.036972 | 0.000000 | 0.441463  | 0.227387 | 0.300166 | 0.604696   | [GridSearchCV(cv=5,<br>error_score='raise-<br>depreca | RV: <u>0_{'indiceCorrMin'</u> :<br>0.25, 'ejec': 1}<br>EDA:1 |
| 1 | 2.150353  | Extra Tree                     | 0.7160   | 0.061034  | 24 | 74 | 13 | 1  | 1.000000 | 0.977700 | 0.170188 | 0.056533 | 0.584646  | 0.373116 | 0.455521 | 0.663290   | [GridSearchCV(cv=5,<br>error_score='raise-<br>depteca | RV: <u>0_{'indiceCorrMin'</u> :<br>0.25, 'ejec': 1}<br>EDA:1 |
| 2 | 3.460731  | Gaussian<br>Naive<br>Bayes     | 0.4820   | 0.048098  | 24 | 71 | 14 | 1  | 0.998744 | 0.937793 | 0.185446 | 0.055276 | 0.350330  | 0.733668 | 0.474218 | 0.611241   | [GridSearchCV(cv=5,<br>error_score='raise-<br>depteca | RV: <u>0.{'indiceCorrMin</u> ':<br>0.25, 'ejec': 1}<br>EDA:1 |
| 3 | 17.000531 | Logistic<br>Regression<br>A    | 0.7324   | 0.228584  | 23 | 64 | 37 | 3  | 0.972362 | 0.835681 | 0.480634 | 0.129397 | 0.684058  | 0.296482 | 0.413672 | 0.745794   | [GridSearchCV(cv=5,<br>error_score='raise-<br>depreca | RV: <u>0.{'indiceCorrMin</u> ':<br>0.25, 'ejec': 1}<br>EDA:1 |
| 4 | 18.818470 | Logistic<br>Regression<br>Base | 0.6980   | 0.223056  | 24 | 65 | 38 | 3  | 0.989950 | 0.859742 | 0.500587 | 0.126884 | 0.545055  | 0.311558 | 0.396483 | 0.748339   | [GridSearchCV(cv=5,<br>error_score='raise-<br>depreca | RV:0_{'indiceCorrMin':<br>0.25, 'ejec': 1}<br>EDA:1          |
| 5 | -0.075117 | Random<br>Forest B             | 0.6820   | 0.125524  | 24 | 72 | 15 | 2  | 1.000000 | 0.948357 | 0.193075 | 0.094221 | 0.501754  | 0.262563 | 0.344316 | 0.584007   | [GridSearchCV(cv=5,<br>error_score='raise-<br>depteca | RV: <u>0_{'indiceCorrMin'</u> :<br>0.25, 'ejec': 1}<br>EDA:1 |
| 6 | 7.881379  | XG Boost                       | 0.7012   | 0.060785  | 24 | 74 | 44 | 7  | 1.000000 | 0.970070 | 0.572770 | 0.285176 | 0.560794  | 0.384422 | 0.434043 | 0.653497   | [GridSearchCV(cv=5,<br>error_score='raise-<br>depreca | RV: <u>0_{'indiceCorrMin</u> ':<br>0.25, 'ejec': 1}<br>EDA:1 |

Economic Estimator.

Estimated saving according to expenditure incurred.

## livePdm. What is it? What technolog





# Report on Machines to be Maintained **Prioritising**

- Binary (24 hours)
- Range (4 8 16 hours)
- Regression (When?)



Efficiency report (OEE and Costs)

# livePdm. IBM technology employed





- High in-house computing needs.
- -- Reduction in costs
- -- Use of market standards
- -- Development and construction platform can be standardised

### **Machine Learning**



**Programmatic Computing** 

Complex algorithms

Large data volumes

#### Watson







Hypothesis and Intensive Learning



High quality insights

# livePdm. Case Study







1 Initial Maintenance Cost Study

| Sales offices              | 635   |
|----------------------------|-------|
| Digital Signage (Machines) | 978   |
| Variables / equipment      | 2,500 |

2 livePdM -> Industrialisation

**TRUE** 

85.02%

3.79%

TRUE

FALSE

**REAL** 

**PREDICTION** 

**FALSE** 

0.32%

10.87%

| Contracted SLA                       | NBD         |
|--------------------------------------|-------------|
| Maintenance Per Call                 | € 590       |
| Incidents/Year                       | 2052        |
| Cost/year                            | € 1,210,680 |
| Availability (hours without service) | 36,936      |

Wrong Result from Predictive (0.32%)

| <b>&gt;</b> | Maintenance Per Call | € 590   |
|-------------|----------------------|---------|
|             | Incidents/Year       | 6.57    |
|             | Cost/Year            | € 3.874 |

|      | ates that attention is needed (total     | increase with |
|------|------------------------------------------|---------------|
| 3./9 | %)<br>Prior administration with 24 hours | € 290         |
|      | Incidents/Year                           | 2130          |
|      | Cost/Year                                | € 617,634     |

| Previous year's cost                 | € 1,210,680 |
|--------------------------------------|-------------|
| livePdM cost                         | € 621,508   |
| Saving                               | € 589,172   |
| % Saving                             | 48.66%      |
| Availability (hours without service) | 118         |

Cost Function to be Minimised

3 Production => livePdM Server

# livePdM. How is a project tackled?





## **Applied consultancy**

- Generation of initial cost study
- Execution of livePdM Algorithms (Binary model)
- Efficiency Study (Costs and Availability)
- Performed in 3 weeks



## Implementation => Lean Model (Maximum Value)

- Phase I. Implement Binary production => First success with ROI
- Phase II. Definition of Error Types and Impact on Business
- Phase III. Execution in livePdM and Implementation
- Iterate Phase II and Phase III => Until a case with no appealing ROI is reached

## livePdm. Where do we do it?





# THANK YOU



